Вход


Главная страница >> Учебный процесс >> Задачник >> Олимпиадные задачи (с решениями) >> Арифметика >> Номер 24

[Назад]    [Содержание ]    [Вперед]

  


Номер 24


  Условие: Номер 24


Задача 23. Натуральное число N>1 представить в виде суммы натуральных чисел так, чтобы произведение этих слагаемых было максимально.

  Решение задачи: Номер 24


Решение задачи 23. Воспользуемся тем, что для n>=4 выполняется неравенство n<=(n-2)*2, т.е. разбивать число на слагаемые, большие 3, не имеет смысла. Выделяем из числа n слагаемые-двойки, пока не получим остаток меньший либо равный 3 (остаток может быть либо 3, либо 2). Так как 2*2*2<3*3, то заменим каждые три двойки на две тройки. По лученное разложение и является искомым. Разберите самостоятельно случаи 1) когда необходимо максимизировать произведение, и слагаемые в разложении числа n должны принадлежать промежутку [A,B], A и B вводятся пользователем. 2) когда необходимо минимизировать произведение, и слагаемые в разложении числа n должны принадлежать промежутку [A,B], A и B вводятся пользователем.

Назад



[Назад]    [Содержание ]    [Вперед]

  


  
За содержание страницы отвечает Гончарова М.Н.
©
Кафедра СПиКБ, 2002-2017