Вход


Главная страница >> Учебный процесс >> Задачник >> Олимпиадные задачи (с решениями) >> Арифметика >> Номер 28

[Назад]    [Содержание ]    [Вперед]

  


Номер 28


  Условие: Номер 28


Задача 27. Дан многогранник, в вершинах которого записаны целые числа. Одним ходом можно выбрать одно ребро, и к числу, записанному в одном из его концов прибавить один, а из числа, записанного в другом конце - вычесть 1. Какому необходимому и достаточному условию должны удовлетворять записанные числа, чтобы с помощью таких ходов можно было добиться, чтобы во всех вершинах был одновременно записан ноль? Ответ обосновать.

  Решение задачи: Номер 28


Решение задачи 27. Это условие - равенство нулю суммы всех чисел. Мы всегда можем "перетащить" с помощью последовательности ходов все ненулевые числа, помечающие вершины, в одну какую-либо вершину. Если сумма всех чисел равна 0, то после этих ходов окажется, что во всех вершинах записан 0.

Назад



[Назад]    [Содержание ]    [Вперед]

  


  
За содержание страницы отвечает Гончарова М.Н.
©
Кафедра СПиКБ, 2002-2017