Вход


Главная страница >> Учебный процесс >> Задачник >> Олимпиадные задачи (с решениями) >> Графы >> Номер 17

[Назад]    [Содержание ]    [Вперед]

  


Номер 17


  Условие: Номер 17


Задача 17. Имеется N городов. Для каждой пары городов (I,J) можно построить дорогу, соединяющую эти два города и не заходящие в другие города. Стоимость такой дороги A(I,J). Вне городов дороги не пересекаются. Написать алгоритм для нахождения самой дешевой системы дорог, позволяющей попасть из любого города в любой другой. Результаты задавать таблицей B[1:N,1:N], где B[I,J]=1 тогда и только тогда, когда дорогу, соединяющую города I и J, следует строить.

  Решение задачи: Номер 17


Решение задачи 17. Легко понять, что сеть дорог будет реализовывать некоторый связный (так как можно проехать из любого города в любой) граф без циклов (так как одно ребро из цикла можно выбросить, а связный граф останется связным). Поэтому алгоритм построения сети дорог минимальной суммарной стоимости очень прост. На каждой итерации необходимо находить дорогу минимальной стоимости, которая не образует цикла с уже выбранными дорогами на предыдущих итерациях. Основную трудность такого решения составляет проверка условия, образуют ли ребра цикл. Однако решение существенно упрощается, если рассматривать только минимальные ребра только между двумя множествами: множеством помеченных вершин и множеством непомеченных вершин. Понятно, что эти множества должно соединять хотя бы одно ребро, чтобы граф был связным. Ясно, что оно должно быть минимальным по длине. В описываемом ниже алгоритме это делается следующим образом. Для каждой вершины к из множества непомеченных вершин (а на начальном этапе это все вершины, кроме первой) определяется ближайшая вершина из множества помеченных вершин БЛИЖ[к]. На каждой итерации определяется кратчайшее ребро (i,j) между множеством помеченных вершин и множеством непомеченных вершин, используя массив БЛИЖ. Найденное ребро выбирается для системы дорог, а соответствующая вершина j считается помеченной. После этого пересчитывается массив БЛИЖ. При этом учитывается, что к изменение некоторой величины БЛИЖ[k] может произойти только тогда, когда расстояние от k до j меньше, чем от k до БЛИЖ[k]. Алгоритм для i от 1 до N выполнять нц флаг[i]:=0; БЛИЖ[i]:=1 кц флаг[1]:=1; для k от 1 до N-1 выполнять нц минрас:=бесконечность; для i от 2 до N выполнять если флаг[i]=0 и минрас > C[БЛИЖ[i],i] то минрас:=C[БЛИЖ[i],i]; j:=i; все Вывод ребра (БЛИЖ[j],j) флаг[j]:=1; для i от 2 до N выполнять если флаг[i]=0 и C[БЛИЖ[i],i]>C[i,j] то БЛИЖ[i]:=j; все кц

Назад



[Назад]    [Содержание ]    [Вперед]

  


  
За содержание страницы отвечает Гончарова М.Н.
©
Кафедра СПиКБ, 2002-2017