Государственное учреждение образования «Лицей г. Новополоцка»

Научно-исследовательская работа по математике

КОММУТАТОР И АССОЦИАТОР ПОЛУОКТАВ, ИХ СВОЙСТВА. ПОСЛЕДОВАТЕЛЬНОСТИ ПОЛУОКТАВ И ИХ СХОДИМОСТЬ.

Выполнили:

Шевцова Ксения Олеговна, Волкова Карина Николаевна 11 класс

Научный руководитель:

Козлов Александр Александрович, заведующий кафедрой высшей математики Полоцкого государственного университета, кандидат физико-математических наук, доцент

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
ОСНОВНАЯ ЧАСТЬ
ГЛАВА 1. Коммутатор и ассоциатор полуоктав, их свойства6
ГЛАВА 2. Последовательности полуоктав и их сходимость18
ЗАКЛЮЧЕНИЕ27
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

множество комплексных чисел, т.е. чисел вида

Первым обобщением совокупности действительных чисел стало

z = a + bi,

действительные числа, а $i = \sqrt{-1}$ - мнимая единица. Необходимость такого обобщения была обусловлена тем, что во множестве действительных чисел не каждое алгебраическое уравнение имело решение. Во множестве же комплексных чисел любое алгебраическое уравнение п-ой степени имеет ровно п корней с учетом их кратностей. Это так называемая основная теорема алгебры [1]. Другим распространением понятия «действительное число» явилось [2, с. 20-23] определение дуальных чисел, т.е. чисел вида a+bi, где a,bдействительные числа, а мнимая единица $i^2=0$, причем $i \notin R$. Непосредственным же обобщением самого множества комплексных чисел явилось введенное В. Гамильтоном в 1843 году понятие кватерниона [2, с. 28] q = a + bi + cj + dk, где a,b,c,d- действительные числа, а i,j,k- базисные (кватернионные) единицы, для которых выполняются соотношения $\dot{i}^2 = \dot{j}^2 = k^2 = -1$, ij = k, jk = i, ki = j, ik = -j, kj = -i, ji = -k. Такие числа и последующие их обобщения называются гиперкомплексными числами. В дальнейшем оказалось, что кватернионы являются не просто отдельным теоретическим объектом математики, а хорошим алгебраическим средством для описания вращений в трех- и четырехмерном пространстве, которые, в свою очередь, широко используются в квантовой и теоретической физиках. Октавы [2, с. 29], т.е. числа вида

$$x = x_0 + x_1 i + x_2 j + x_3 k + x_4 l + x_5 i l + x_6 j l + x_7 k l$$

с действительными коэффициентами x_s и мнимыми (базисными) единицами i,j,k,l,il,jl,kl, для которых имеет место следующая таблица умножения [2, с. 29]

1	i	j	k	l	il	jl	kl
i	-1	k	-j	il	-l	-kl	jl
\boldsymbol{j}	-k	-1	i	jl	kl	-l	-il
\boldsymbol{k}	j	-i	-1	kl	-jl	il	-l
\boldsymbol{l}	-il	-jl	-kl	-1	i	j	k
il	l	-kl	jl	-i	-1	-k	j
jl	kl	l	-il	-j	k	-1	-i
kl	-jl	il	l	-k	-j	i	-1

впервые были рассмотрены в 1843 г. Дж. Грейвсом, приятелем В. Гамильтона, а двумя годами позже независимо А. Кэли. Поскольку эти числа были основательно изучены А. Кэли, их совокупность, помимо названия «множество октав», стало иметь еще и название «алгебра Кэ́ли». В последнее время октавы (как и кватернионы) широко используются в теоретической и квантовой

физиках, напр., при решении задач электродинамики (уравнения Максвелла), в специальной теории относительности, а также в теории струн.

Иным обобщением множества комплексных чисел явилось введенное в 1997 г. в книге «Геометрия лиевых групп» [3] Борисом Розенфельдом, понятие полукватерниона как обобщения комплексных чисел, основанного на своего рода синтезе дуальных и комплексных чисел, однако рассмотрением свойств и операций в таком множестве занимались иранские учёные Мортазашл и Джафари [4].

Определение 1 [3]. Действительный полукватернион определим как выражение вида $q = a_0 + a_1 i + a_2 j + a_3 k$, в котором a_0, a_1, a_2, a_3 - действительные числа, а i, j, k - кватернионные (базисные) единицы, для которых выполняются соотношения $i^2 = -1$, $j^2 = k^2 = 0$, ij = k, jk = 0, ik = -j, ki = j, kj = 0, ji = -k.

В той же работе Бориса Розенфельда «Геометрия лиевых групп» было введено понятие полуоктавы без изучения свойств и операций в этом множестве. Пользуясь аналогичным Х. Мортазашлу и М. Джафари подходом, А.А. Козлов ввел арифметические действия над полуоктавами. Одним из основных свойств операции умножения полуоктав является свойство ее неассоциативности, т.е. множество полуоктав с введенными операциями сложения умножения полуоктав [5] является неассоциативной, И некоммутативной, дистрибутивной алгеброй [6, с. 380-383]. Поэтому представляет отдельный интерес введение и исследование свойств ассоциатора и коммутатора полуоктав как мер неассоциативности и некоммутативности операции умножения полуоктав, что и является одной из основных задач данной работы.

Наряду с отдельными полуоктавами представляет интерес и изучение последовательности полуоктав. Аналогично последовательностям во множестве действительных чисел можно изучить и сходимость последовательности полуоктав во множестве полуоктав. В этом состоит вторая задача данной работы.

Таким образом, в предлагаемой исследовательской работе

- *ОБЪЕКТОМ ИССЛЕДОВАНИЯ* являются множества полуоктав и их последовательностей с введенными на этих множествах арифметическими операциями;
- *CУБЪЕКТОМ ИССЛЕДОВАНИЯ* являются свойства коммутатора и ассоциатора полуоктав, а также сходимость последовательностей полуоктав.

Сформулируем ГИПОТЕЗУ: существуют относительно простые свойства коммутатора и ассоциатора полуоктав, а также имеются сходящиеся во множестве полуоктав последовательности полуоктав.

Для подтверждения сформулированной гипотезы поставим следующие **ЦЕЛИ:**

— Дать определение коммутатора и ассоциатора для полуоктав и исследовать их свойства и взаимосвязи;

- Ввести понятие последовательности полуоктав и ее сходимости (полной и по норме), установить взаимосвязь типов сходимости, получить некоторые свойства сходящихся последовательностей полуоктав.
- ЗАДАЧА ИССЛЕДОВАНИЯ полностью определена поставленными выше целями исследования и состоит в изучении отдельных свойств, введенных в работе, коммутатора и ассоциатора полуоктав, а также сходящихся последовательностей полуоктав.
- **СРЕДСТВА ИССЛЕДОВАНИЯ:** арифметика действительных и гиперкомплексных чисел, теория пределов, теория матриц.
- **МЕТОДЫ ИССЛЕДОВАНИЯ:** методы арифметики множеств действительных и гиперкомплексных чисел, теории пределов, матричного анализа.

ОСНОВНАЯ ЧАСТЬ

ГЛАВА 1. Коммутатор и ассоциатор полуоктав, их свойства.

Определение 1 [3]. Полуоктавой назовем формальное выражение вида

$$w = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7$$

где $a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7$ - действительные числа, а $i_1, i_2, i_3, i_4, i_5, i_6, i_7$ - базисные (мнимые) единицы, удовлетворяющие следующим равенствам

$$i_k^2 = -1 \ npu \ k = \overline{1,3} \ u \ i_k^2 = 0 \ npu \ k = \overline{4,7},$$

 $i_k \cdot i_l = i_{k+l} = -i_l \cdot i_k \ npu \ k < l \ u \ k + l \le 4,$
 $i_k \cdot i_l = 0 \ npu \ k + l > 4.$

Множество всех полуоктав обозначим через W.

Определение 2 [5]. Суммой полуоктав $w_1 = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7 \in W$ и $w_2 = b_0 + b_1 i_1 + b_2 i_2 + b_3 i_3 + b_4 i_4 + b_5 i_5 + b_6 i_6 + b_7 i_7 \in W$ назовем полуоктаву $w_1 + w_2 \in W$, определяемую равенством

$$w_1 + w_2 = (a_0 + b_0) + (a_1 + b_1)i_1 + (a_2 + b_2)i_2 + (a_3 + b_3)i_3 + (a_4 + b_4)i_4 + (a_5 + b_5)i_5 + (a_6 + b_6)i_6 + (a_7 + b_7)i_7.$$

Пример 1. Пусть даны полуоктавы

$$w_1 = -1 + 2i_1 + 3i_2 - 7i_3 + i_4 - 4i_6 + 8i_7$$
 и $w_2 = 3 + i_1 + 4i_2 - i_3 + 5i_4 - 2i_5 + 4i_6$.

Тогда их суммой будет полуоктава

$$w_1 + w_2 = 2 + 3i_1 + 7i_2 - 8i_3 + 6i_4 - 2i_5 + 8i_7$$
.

Следующая теорема устанавливает свойства операции сложения полуоктав:

Теорема 1 [5]. Сумма полуоктав обладает свойствами ассоциативности и коммутативности.

1)
$$w_1 + w_2 = w_2 + w_1$$
,
2) $(w_1 + w_2) + w_3 = w_1 + (w_2 + w_3)$.

Определение 3 [5]. Пусть $c \in R$ u $w = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7 \in W$. Произведением числа $c \in R$ на полуоктаву $w \in W$ назовем полуоктаву $cw = (ca_0) + (ca_1)i_1 + (ca_2)i_2 + (ca_3)i_3 + (ca_4)i_4 + (ca_5)i_5 + (ca_6)i_6 + (ca_7)i_7 \in W$.

Теорема 2 [5]. Операция произведения числа на полуоктаву обладает следующими свойствами:

- 1) $(c_1+c_2)w = c_1w+c_2w$ при всяких $c_1,c_2 \in R$ и $w \in W$;
- 2) $(c_1c_2)w_1 = c_1(c_2w_1)$ при всяких $c_1, c_2 \in R$ и $w_1 \in W$;
- 3) $c(w_1 + w_2) = cw_1 + cw_2$ для произвольных $c \in R$ и $w_1, w_2 \in W$.

Определение 4 [5]. Произведением полуоктав

 $w_1=a_0+a_1i_1+a_2i_2+a_3i_3+a_4i_4+a_5i_5+a_6i_6+a_7i_7$ u $w_2=b_0+b_1i_1+b_2i_2+b_3i_3+b_4i_4+b_5i_5+b_6i_6+b_7i_7$ назовем полуоктаву $w_1w_2\in W$, определяемую следующим равенством

$$\begin{aligned} w_1 w_2 &= (a_0 b_0 - a_1 b_1 - a_2 b_2 - a_3 b_3) + (a_1 b_0 + a_0 b_1) i_1 + \\ &+ (a_2 b_0 + a_0 b_2) i_2 + (a_0 b_3 + a_3 b_0 + a_1 b_2 - a_2 b_1) i_3 + \end{aligned}$$

 $+(a_0b_4+a_4b_0+a_1b_3-a_3b_1)i_4+(a_5b_0+a_0b_5)i_5+(a_6b_0+a_0b_6)i_6+(a_7b_0+a_0b_7)i_7.$

Пример 2. Пусть даны полуоктавы

$$w_1 = -1 + 2i_1 + 3i_2 - 7i_3 + i_4 - 4i_6 + 8i_7 \text{ M } w_2 = 3 + i_1 + 4i_2 - i_3 + 5i_4 - 2i_5 + 4i_6.$$

Тогда их произведением является полуоктава

$$w_1 w_2 = -24 + 5i_1 + 5i_2 - 17i_3 + 3i_4 + 2i_5 - 16i_6 + 24i_7$$
.

Исходя из определения произведения матриц, эту операцию можно представить [5] в виде произведения матрицы на вектор, элементами которого являются числа, стоящие при действительной и мнимых единицах второго сомножителя:

$$w_1 w_2 = \begin{bmatrix} a_0 & -a_1 & -a_2 & -a_3 & 0 & 0 & 0 & 0 \\ a_1 & a_0 & 0 & 0 & 0 & 0 & 0 & 0 \\ a_2 & 0 & a_0 & 0 & 0 & 0 & 0 & 0 \\ a_3 & -a_2 & a_1 & a_0 & 0 & 0 & 0 & 0 \\ a_4 & -a_3 & 0 & a_1 & a_0 & 0 & 0 & 0 \\ a_5 & 0 & 0 & 0 & 0 & a_0 & 0 & 0 \\ a_6 & 0 & 0 & 0 & 0 & 0 & a_0 & 0 \\ a_7 & 0 & 0 & 0 & 0 & 0 & 0 & a_0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix}$$

Теорема 3 [5]. Операция произведения полуоктав обладает следующими свойствами:

- 1) $w_1w_2 \neq w_2w_1$ при всяких $w_1, w_2 \in W, w_1, w_2 \notin R$,
- 2) $w_1(w_2w_3) \neq (w_1w_2)w_3$ при всяких $w_1, w_2, w_3 \in W$, $w_1, w_2, w_3 \notin R$,
- 3) $w_1(w_2+w_3)=w_1w_2+w_1w_3$ при всяких $w_1,w_2,w_3\in W,\ w_1,w_2,w_3\notin R,$
- 4) $(w_2 + w_3)w_1 = w_2w_1 + w_3w_1$ npu всяких $w_1, w_2, w_3 \in W$, $w_1, w_2, w_3 \notin R$,
 - 5) cw = wc для произвольных $c \in R$ и $w \in W$,
- 6) $c(w_1w_2) = (cw_1)w_2 = w_1(cw_2) = (w_1w_2)c$ при всяких $c \in R$ и $w_1, w_2 \in W$.

Замечание 1. Из теорем 1 и 2 следует, что множество полуоктав является неассоциативной, некоммутативной, дистрибутивной алгеброй.

В связи с некоммутативностью произведения полуоктав резонно ввести понятие коммутатора полуоктав как меру отклонения произведения полуоктав от коммутативности.

Определение 5. Коммутатором полуоктав

 $w_1 = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7$ И $w_2 = b_0 + b_1 i_1 + b_2 i_2 + b_3 i_3 + b_4 i_4 + b_5 i_5 + b_6 i_6 + b_7 i_7$ назовём выражение

$$[w_1, w_2] = w_1 w_2 - w_2 w_1.$$

Замечание 2. В силу определения и свойств операций разности и произведения полуоктав выполняется включение $[w_1, w_2] \in W$.

Теорема 4. Для любых полуоктав w_1 и w_2 справедливо выражение

$$\begin{bmatrix} w_1, w_2 \end{bmatrix} = 2 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} i_3 + 2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} i_4.$$

Доказательство. Возьмем произвольные полуоктавы w_1 и w_2 . Исходя из определения коммутатора полуоктав имеем равенства

$$\begin{split} w_1w_2 &= (a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3) + (a_1b_0 + a_0b_1)i_1 + \\ &+ (a_2b_0 + a_0b_2)i_2 + (a_0b_3 - a_1b_2 + a_2b_1 + a_3b_0)i_3 + (a_0b_4 - a_1b_3 + a_3b_1 + a_4b_0)i_4 + \\ &+ (a_5b_0 + a_0b_5)i_5 + (a_6b_0 + a_0b_6)i_6 + (a_7b_0 + a_0b_7)i_7, \end{split}$$

$$\begin{split} w_2w_1 &= (a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3) + (a_1b_0 + a_0b_1)i_1 + \\ &+ (a_2b_0 + a_0b_2)i_2 + (a_0b_3 - a_1b_2 + a_2b_1 + a_3b_0)i_3 + (a_0b_4 - a_1b_3 + a_3b_1 + a_4b_0)i_4 + \\ &+ (a_5b_0 + a_0b_5)i_5 + (a_6b_0 + a_0b_6)i_6 + (a_7b_0 + a_0b_7)i_7. \end{split}$$

$$[w_1, w_2] = w_1 w_2 - w_2 w_1 = (a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3) + (a_1b_0 + a_0b_1)i_1 + (a_2b_0 + a_0b_2)i_2 + (a_0b_3 + a_3b_0 + a_1b_2 - a_2b_1)i_3 + (a_0b_4 + a_4b_0 + a_1b_3 - a_3b_1)i_4 + (a_5b_0 + a_0b_5)i_5 + (a_6b_0 + a_0b_6)i_6 + (a_7b_0 + a_0b_7)i_7 - ((a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3) + (a_1b_0 + a_0b_1)i_1 + (a_2b_0 + a_0b_2)i_2 + (a_0b_3 - a_1b_2 + a_2b_1 + a_3b_0)i_3 + (a_0b_4 - a_1b_3 + a_3b_1 + a_4b_0)i_4 + (a_5b_0 + a_0b_5)i_5 + (a_6b_0 + a_0b_6)i_6 + (a_7b_0 + a_0b_7)i_7) = (-2a_2b_1 + 2a_1b_2)i_3 + (-2a_3b_1 + 2a_1b_3)i_4.$$

Исходя из элементарных свойств определителя

$$(-2a_2b_1 + 2a_1b_2)i_3 + (-2a_3b_1 + 2a_1b_3)i_4 = 2\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}i_3 + 2\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}i_4.$$

Теорема 4 доказана.

Следствие 1. Если $a_1 = a_2 = a_3 = 0$, то справедливо тождество

$$[w_1, w_2] = 0.$$

Доказательство. Возьмем произвольные полуоктавы w_1 и w_2 .

$$w_{1} = a_{0} + 0i_{1} + 0i_{2} + 0i_{3} + a_{4}i_{4} + a_{5}i_{5} + a_{6}i_{6} + a_{7}i_{7} = a_{0} + a_{4}i_{4} + a_{5}i_{5} + a_{6}i_{6} + a_{7}i_{7},$$

$$w_{2} = b_{0} + b_{1}i_{1} + b_{2}i_{2} + b_{3}i_{3} + b_{4}i_{4} + b_{5}i_{5} + b_{6}i_{6} + b_{7}i_{7}.$$

Пользуясь формулой для вычисления коммутатора полуоктав, имеем очевидное равенство

$$(-2 \cdot 0b_1 + 2 \cdot 0b_2)i_3 + (-2 \cdot 0b_1 + 2 \cdot 0b_3)i_4 = 0.$$

Следствие 1 доказано.

Следствие 2. Если $b_1 = b_2 = b_3 = 0$, то справедливо тождество

$$[w_1, w_2] = 0.$$

Доказательство. Возьмем произвольные полуоктавы w_1 и w_2 .

$$w_1 = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7,$$

$$w_2 = b_0 + 0 i_1 + 0 i_2 + 0 i_3 + b_4 i_4 + b_5 i_5 + b_6 i_6 + b_7 i_7 = b_0 + b_4 i_4 + b_5 i_5 + b_6 i_6 + b_7 i_7.$$

Пользуясь формулой для вычисления коммутатора полуоктав, имеем очевидное равенство

$$(-2a_2 \cdot 0 + 2a_1 \cdot 0)i_3 + (-2a_3 \cdot 0 + 2a_1 \cdot 0)i_4 = 0.$$

Следствие 2 доказано.

Следствие 3. Для любых полуоктав $w_1, w_2 \in W$ верны соотношения

$$\begin{bmatrix} w_1, w_2 \end{bmatrix}^2 = -4 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}^2 \in R.$$

Доказательство. Возьмем произвольные полуоктавы w_1 и w_2 . Из теоремы 4 имеем равенство

$$\begin{bmatrix} w_1, w_2 \end{bmatrix} = 2 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} i_3 + 2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} i_4.$$

Тогда, выражение $[w_1, w_2]^2$ равносильно выражению

$$\left(2\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} i_3 + 2\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} i_4\right)^2 = \left(2\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} i_3\right)^2 + \left(2\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} i_4\right)^2 - 2\left(2\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} i_3\right) \left(2\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} i_4\right).$$

Исходя из того, что $i_3^2 = -1$, $i_4^2 = 0$ и $i_3 \cdot i_4 = 0$, имеем следующие тождества

$$\begin{bmatrix} w_1, w_2 \end{bmatrix}^2 = \begin{pmatrix} 2 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} i_3 \end{pmatrix}^2 = -4 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}^2 \in R.$$

Следствие 3 доказано.

Теорема 5. Для любых полуоктав w_1 и w_2 справедливо равенство

$$[w_1, w_2] = -[w_2, w_1].$$

Доказательство. Возьмем произвольные полуоктавы w_1 и w_2 . Тогда, ввиду определения коммутатора полуоктав, имеем очевидные соотношения $[w_1, w_2] = w_1 w_2 - w_2 w_1$ и $[w_2, w_1] = w_2 w_1 - w_1 w_2$.

Отсюда, с учетом свойства 3) теоремы 2, вытекают требуемые равенства $[w_1,w_2]=w_1w_2-w_2w_1=(-1)\cdot(-w_1w_2)+(-1)\cdot w_2w=(-1)\cdot(w_2w_1-w_1w_2)=-[w_2,w_1].$ Теорема 5 доказана.

Теорема 6. Для любых полуоктав w_1 , w_2 и w_3 справедливо равенство $[w_1 w_2 \pm w_3] = [w_1, w_2] \pm [w_1, w_3]$.

Доказательство. Для доказательства равенства возьмем произвольные полуоктавы $w_1, w_2, w_3 \in W$. Тогда, ввиду определения коммутатора, имеем равенство

$$[w_1, w_2 \pm w_3] = w_1(w_2 \pm w_3) - (w_2 \pm w_3)w_1. \tag{1}$$

В силу свойства дистрибутивности произведения полуоктав относительно их сложения (теорема 3, свойства 3) и 4)), а также определения коммутатора полуоктав имеем равенства

$$w_{1}(w_{2} \pm w_{3}) - (w_{2} \pm w_{3})w_{1} = (w_{1}w_{2} \pm w_{1}w_{3}) - (w_{2}w_{1} \pm w_{3}w_{1}) =$$

$$= (w_{1}w_{2} - w_{2}w_{1}) \pm (w_{1}w_{3} - w_{3}w_{1}) = [w_{1}, w_{2}] \pm [w_{1}, w_{3}].$$
(2)

Тогда из равенств (1) и (2) вытекают требуемые соотношения $[w_1, w_2 \pm w_3] = [w_1, w_2] \pm [w_1, w_3]$

Теорема 6 доказана.

В силу неассоциативности произведения полуоктав Козловым А.А., Жалейко Н.Д., Суравневой К.С. было введено понятие ассоциатора полуоктав как меру отклонения произведения полуоктав от ассоциативности.

Определение 6. Ассоциатором полуоктав

$$w_{1} = a_{0} + a_{1}i_{1} + a_{2}i_{2} + a_{3}i_{3} + a_{4}i_{4} + a_{5}i_{5} + a_{6}i_{6} + a_{7}i_{7} \in W$$

$$w_{2} = b_{0} + b_{1}i_{1} + b_{2}i_{2} + b_{3}i_{3} + b_{4}i_{4} + b_{5}i_{5} + b_{6}i_{6} + b_{7}i_{7} \in W$$

$$w_{3} = c_{0} + c_{1}i_{1} + c_{2}i_{2} + c_{3}i_{3} + c_{4}i_{4} + c_{5}i_{5} + c_{6}i_{6} + c_{7}i_{7} \in W$$

назовём выражение вида

$$\{w_1, w_2, w_3\} = w_1(w_2w_3) - (w_1w_2)w_3.$$

Замечание 3. В силу определения и свойств операций разности и произведения полуоктав для любых $w_1, w_2, w_3 \in W$ выполняется включение

$$\{w_1, w_2, w_3\} \in W$$
.

Теорема 7. Для любых полуоктав $w_1, w_2, w_3, w_4 \in W$ справедливо равенство:

$$\{w_1, [w_2, w_3], w_4\} = -\{w_1, [w_3, w_2], w_4\}$$

Доказательство. Исходя из определения ассоциатора и коммутатора, свойства дистрибутивности и антикоммутативности (теорема 4) полуоктав имеем равенства:

$$\{w_{1,}[w_{2},w_{3}],w_{4}\} = w_{1}([w_{2},w_{3}]w_{4}) - (w_{1}[w_{2},w_{3}])w_{4} = w_{1}((w_{2}w_{3}-w_{3}w_{2})w_{4}) - (w_{1}(w_{2}w_{3}-w_{3}w_{2}))w_{4} = w_{1}((w_{2}w_{3})w_{4}) - (w_{1}(w_{2}w_{3})w_{4}) - (w_{1}(w_{2}w_{3}))w_{4} + (w_{1}(w_{3}w_{2}))w_{4} = w_{1}([w_{3},w_{2}],w_{4}) - (w_{1}[w_{3},w_{2}])w_{4} - (w_{1}(w_{3}w_{2}-w_{2}w_{3}))w_{4} - (w_{1}(w_{3}w_{2}-w_{2}w_{3}))w_{4} = w_{1}((w_{3}w_{2})w_{4}) - (w_{1}(w_{3}w_{2})w_{4}) - (w_{1}(w_{3}w_{2}))w_{4} + (w_{1}(w_{2}w_{3}))w_{4} = w_{1}((w_{3}w_{2})w_{4}) - (w_{1}(w_{3}w_{2}))w_{4} + (w_{1}(w_{2}w_{3}))w_{4} + (w_{1}(w_{2}w_{3}))w_{4} = w_{1}((w_{3}w_{2})w_{4}) - (w_{1}(w_{3}w_{2}))w_{4} + (w_{1}(w_{2}w_{3}))w_{4} + (w_{1}(w_{2}w_{3}))w$$

Исходя из этого получаем равенство:

$$\begin{split} w_1((w_2w_3)w_4) - w_1((w_3w_2)w_4) - (w_1(w_2w_3))w_4 + (w_1(w_3w_2))w_4 = \\ = -(w_1((w_3w_2)w_4) - w_1((w_2w_3)w_4) - (w_1(w_3w_2))w_4 + (w_1(w_2w_3))w_4) \\ \{w_1, [w_2, w_3], w_4\} = -\{w_1, [w_3, w_2], w_4\} \end{split}$$

Теорема 7 доказана.

Пример 3. Пусть даны полуоктавы:

$$\begin{split} w_1 &= 1 \; + \; 7i_1 \; + \; 6i_2 \; + \; 1i_3 \; + \; 3i_4 \; + \; 4i_5 \; + \; 5i_6 \; + \; 5i_7, \in W \\ w_2 &= 4 \; + \; 5i_1 \; + \; 3i_2 \; + \; 3i_3 \; + \; 8i_4 \; + \; 1i_5 \; + \; 3i_6 \; + \; 2i_7, \in W \\ w_3 &= 2 \; + \; 3i_1 \; + \; 1i_2 \; + \; 5i_3 \; + \; 9i_4 \; + \; 4i_5 \; + \; 1i_6 \; + \; 3i_7, \in W \\ w_4 &= 2 \; + \; 1i_1 \; + \; 3i_2 \; + \; 2i_3 \; + \; 5i_4 \; + \; 6i_5 \; + \; 1i_6 \; + \; 6i_7, \in W. \end{split}$$

В силу определения матричного представления произведения полуоктав, имеем следующие равенства:

$$w_2 w_3 = \begin{bmatrix} 4 & -5 & -3 & -3 & 0 & 0 & 0 & 0 \\ 5 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 3 & -3 & 5 & 4 & 0 & 0 & 0 & 0 \\ 8 & -3 & 0 & 5 & 4 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \\ 5 \\ 9 \\ 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -25 \\ 22 \\ 10 \\ 22 \\ 68 \\ 18 \\ 10 \\ 16 \end{bmatrix}$$

$$w_3 w_2 = \begin{vmatrix} 2 & -3 & -1 & -5 & 0 & 0 & 0 & 0 & | & 4 \\ 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & | & 5 \\ 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & | & 3 \\ 5 & -1 & 3 & 2 & 0 & 0 & 0 & 0 & | & 3 \\ 9 & -5 & 0 & 3 & 2 & 0 & 0 & 0 & | & 8 \\ 4 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & | & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & | & 3 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & | & 2 \end{vmatrix} = \begin{vmatrix} -25 \\ 22 \\ 10 \\ 36 \\ 18 \\ 10 \\ 36 \\ 16 \end{vmatrix}$$

$$(w_2w_3)w_4 = \begin{bmatrix} -25 & -22 & -10 & -22 & 0 & 0 & 0 & 0 \\ 22 & -25 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & -25 & 0 & 0 & 0 & 0 & 0 \\ 22 & -10 & 22 & -25 & 0 & 0 & 0 & 0 \\ 68 & -22 & 0 & 22 & -25 & 0 & 0 & 0 \\ 18 & 0 & 0 & 0 & 0 & -25 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & -25 & 0 \\ 16 & 0 & 0 & 0 & 0 & 0 & 0 & -25 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \\ 5 \\ 6 \\ 11 \\ 4 \\ -5 \\ -118 \end{bmatrix}$$

$$(w_3w_2)w_4 = \begin{bmatrix} -25 & -22 & -10 & -30 & 0 & 0 & 0 & 0 \\ 22 & -25 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & -25 & 0 & 0 & 0 & 0 & 0 \\ 30 & -10 & 22 & -25 & 0 & 0 & 0 & 0 \\ 36 & -30 & 0 & 22 & -25 & 0 & 0 & 0 \\ 18 & 0 & 0 & 0 & 0 & -25 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & -25 & 0 \\ 16 & 0 & 0 & 0 & 0 & 0 & 0 & -25 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 5 \\ 66 \\ -39 \\ -114 \\ -5 \\ -118 \end{bmatrix}$$

$$w_{1}((w_{2}w_{3})w_{4}) = \begin{bmatrix} 1 & -7 & -6 & -1 & 0 & 0 & 0 & 0 \\ 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -6 & 7 & 1 & 0 & 0 & 0 & 0 \\ 3 & -1 & 0 & 7 & 1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -146 \\ 19 \\ -55 \\ 50 \\ 33 \\ -114 \\ -5 \\ -118 \end{bmatrix} = \begin{bmatrix} 1 \\ -1003 \\ -931 \\ -595 \\ -74 \\ -698 \\ -735 \\ -848 \end{bmatrix}$$

$$w_{1}((w_{3}w_{2})w_{4}) = \begin{vmatrix} 1 & -7 & -6 & -1 & 0 & 0 & 0 & 0 \\ 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -6 & 7 & 1 & 0 & 0 & 0 & 0 \\ 3 & -1 & 0 & 7 & 1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{vmatrix} \begin{bmatrix} -31 \\ 19 \\ -55 \\ 66 \\ -39 \\ -114 \\ -5 \\ -118 \end{bmatrix} = \begin{vmatrix} -31 \\ -1115 \\ -1027 \\ -595 \\ -82 \\ -762 \\ -815 \\ -928 \end{bmatrix}$$

$$w_{1}(w_{2}w_{3}) = \begin{bmatrix} 1 & -7 & -6 & -1 & 0 & 0 & 0 & 0 \\ 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -6 & 7 & 1 & 0 & 0 & 0 & 0 \\ 3 & -1 & 0 & 7 & 1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -25 \\ 22 \\ 10 \\ 22 \\ 68 \\ 18 \\ 10 \\ 16 \end{bmatrix} = \begin{bmatrix} -261 \\ -153 \\ -140 \\ -65 \\ 125 \\ -82 \\ -115 \\ -109 \end{bmatrix}$$

$$w_1(w_3w_2) = \begin{bmatrix} 1 & -7 & -6 & -1 & 0 & 0 & 0 & 0 \\ 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -6 & 7 & 1 & 0 & 0 & 0 & 0 \\ 3 & -1 & 0 & 7 & 1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -25 \\ 22 \\ 10 \\ 30 \\ 36 \\ 18 \\ -82 \\ -115 \\ -109 \end{bmatrix}$$

$$(w_1(w_3w_2))w_4 = \begin{bmatrix} -269 & 153 & 140 & 57 & 0 & 0 & 0 & 0 \\ -153 & -269 & 0 & 0 & 0 & 0 & 0 & 0 \\ -140 & 0 & -269 & 0 & 0 & 0 & 0 & 0 \\ -57 & 140 & -153 & -269 & 0 & 0 & 0 & 0 \\ -82 & 0 & 0 & 0 & 0 & -269 & 0 & 0 \\ -109 & 0 & 0 & 0 & 0 & 0 & -269 & 0 \\ -109 & 0 & 0 & 0 & 0 & 0 & 0 & -269 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \\ 5 \\ 6 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 149 \\ -575 \\ -1087 \\ -971 \\ -1296 \\ -1778 \\ -499 \\ -1832 \end{bmatrix}$$

$$(w_1(w_2w_3))w_4 = \begin{bmatrix} -261 & 153 & 140 & 65 & 0 & 0 & 0 & 0 \\ -153 & -261 & 0 & 0 & 0 & 0 & 0 \\ -165 & 140 & -153 & -261 & 0 & 0 & 0 & 0 \\ 125 & 65 & 0 & -153 & -261 & 0 & 0 & 0 \\ -82 & 0 & 0 & 0 & 0 & -261 & 0 & 0 \\ -82 & 0 & 0 & 0 & 0 & -261 & 0 & 0 \\ -115 & 0 & 0 & 0 & 0 & 0 & -261 & 0 \\ -109 & 0 & 0 & 0 & 0 & 0 & 0 & -261 & 0 \\ -109 & 0 & 0 & 0 & 0 & 0 & 0 & -261 & 0 \\ -109 & 0 & 0 & 0 & 0 & 0 & 0 & -261 & 0 \\ -109 & 0 & 0 & 0 & 0 & 0 & 0 & -261 \\ -109 & 0 & 0 & 0 & 0 & 0 & 0 & -261 \\ -1784 \end{bmatrix}$$

В силу определения операции сложения и вычитания матриц, имеем следующие равенства:

$$\{w_1, [w_2, w_3], w_4\} = w_1((w_2w_3)w_4) - w_1((w_3w_2)w_4) - (w_1(w_2w_3))w_4 + (w_1(w_3w_2))w_4$$

$$\{w_1, [w_2, w_3], w_4\} = \begin{bmatrix} 1 \\ -1003 \\ -931 \\ -595 \\ -74 \\ -698 \\ -735 \\ -848 \end{bmatrix} - \begin{bmatrix} -31 \\ -1115 \\ -1027 \\ -595 \\ -82 \\ -762 \\ -815 \\ -928 \end{bmatrix} - \begin{bmatrix} 181 \\ -567 \\ -1063 \\ -971 \\ -1296 \\ -1730 \\ -491 \\ -1784 \end{bmatrix} + \begin{bmatrix} 0 \\ 104 \\ 72 \\ -971 \\ -1296 \\ -1778 \\ -499 \\ -1832 \end{bmatrix} = \begin{bmatrix} 0 \\ 104 \\ 72 \\ 32 \end{bmatrix}$$
 Аналогичным образом:

Аналогичным образом:

$$\{w_{1}, [w_{3}, w_{2}], w_{4}\} = w_{1}((w_{3}w_{2})w_{4}) - w_{1}((w_{2}w_{3})w_{4}) - (w_{1}(w_{3}w_{2}))w_{4} + (w_{1}(w_{2}w_{3}))w_{4} + (w_{1}(w_{2}$$

Из вышеприведенных равенств имеем:

-1832

$$\begin{bmatrix} 0 \\ 104 \\ 72 \\ 0 \\ 8 \\ 16 \\ 72 \\ 32 \end{bmatrix} = -\begin{bmatrix} 0 \\ -104 \\ -72 \\ 0 \\ -8 \\ -16 \\ -72 \\ -32 \end{bmatrix},$$

а значит:

$$\{w_1, [w_2, w_3], w_4\} = -\{w_1, [w_3, w_2], w_4\}$$

Определение 7 [5]. Сопряженной полуоктавой для полуоктавы

$$w = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7$$

назовем полуоктаву

$$\overline{w} = a_0 - (a_1i_1 + a_2i_2 + a_3i_3 + a_4i_4 + a_5i_5 + a_6i_6 + a_7i_7).$$

Пример 4. Пусть дана полуоктава $w = -1 + 2i_1 + 3i_2 - 7i_3 + i_4 - 4i_6 + 8i_7$. Тогда сопряженной для данной будет полуоктава

$$\overline{w} = -1 - 2i_1 - 3i_2 + 7i_3 - i_4 + 4i_6 - 8i_7$$
.

Теорема 8. Для коммутатора полуоктавы и её сопряженной полуоктавы справедливо равенство:

$$[w_1,\overline{w_1}]=0$$

Доказательство. Пусть дана полуоктава и сопряженная к ней полуоктава:

$$w = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7,$$

$$w = a_0 - (a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7).$$

Определим значения произведений полуоктавы на сопряженную и сопряженной на полуоктаву:

$$\begin{split} &\overset{-}{ww} = (a_0 a_0 - a_1 (-a_1) - a_2 (-a_2) - a_3 (-a_3)) + (a_1 a_0 + a_0 (-a_1)) i_1 + (a_2 a_0 + a_0 (-a_2)) i_2 + \\ & + (a_0 (-a_3) + a_3 a_0) + a_1 (-a_2) - a_2 (-a_1)) i_3 + (a_0 (-a_4) + a_4 a_0 + a_1 (-a_3) - a_3 (-a_1)) i_4 + \\ & + (a_5 a_0 + a_0 (-a_5)) i_5 + (a_6 a_0 + a_0 (-a_6)) i_6 + (a_7 a_0 + a_0 (-a_7)) i_7 = a_0^2 + a_1^2 + a_2^2 + a_3^2 \\ & \overset{-}{ww} = (a_0 a_0 - (-a_1) a_1 - (-a_2) a_2 - (-a_3) a_3) + (-a_1 a_0 + a_0 a_1) i_1 + (-a_2 a_0 + a_0 a_2) i_2 + \\ & + (a_0 a_3 + (-a_3) a_0 + (-a_1) a_2 - (-a_2) a_1) i_3 + (a_0 a_4 + (-a_4) a_0 + (-a_1 a_3 - (-a_3) a_1) i_4 + \\ & + ((-a_5) a_0 + a_0 a_5) i_5 + ((-a_6) a_0 + a_0 (-a)_6) i_6 + ((-a_7) a_0 + a_0 a_7) i_7 = a_0^2 + a_1^2 + a_2^2 + a_3^2 . \end{split}$$

Из этого имеем равенства:

$$[w_1, \overline{w_1}] = w_1 \overline{w_1} - \overline{w_1} w_1 = a_0^2 + a_1^2 + a_2^2 + a_3^2 - (a_0^2 + a_1^2 + a_2^2 + a_3^2) = 0.$$

$$[w_1, \overline{w_1}] = w_1 \overline{w_1} - \overline{w_1} w_1 = 0$$

Теорема 8 доказана.

Пример 5. Пусть дана полуоктава и сопряженная к ней полуоктава:

$$w = 9 + 1i_1 + 6i_2 + 2i_3 + 3i_4 + 1i_5 + 2i_6 + 4i_7$$

$$-$$

$$w = 9 - (1i_1 + 6i_2 + 2i_3 + 3i_4 + 1i_5 + 2i_6 + 4i_7).$$

Исходя из определения произведения полуоктавы на сопряженную и сопряженной на полуоктаву, имеем следующие равенства:

$$\overline{ww} = 9^2 + 1^2 + 6^2 + 2^2 = 122$$

$$\overline{ww} = 9^2 + 1^2 + 6^2 + 2^2 = 122.$$

Исходя из определения коммутатора и полученных равенств, имеем:

$$[w_1, \overline{w_1}] = w_1 \overline{w_1} - \overline{w_1} w_1 = 122 - 122 = 0$$

Теорема 9. Для любых полуоктав $w_1, w_2, w_3 \in w$ и $c \in R$, справедливо равенство

$$\{c \cdot w_1, w_2, w_3\} = \{w_1, c \cdot w_2, w_3\} = \{w_1, w_2, c \cdot w_3\} = c \cdot \{w_1, w_2, w_3\}$$

Доказательство. Из определения ассоциатора имеем и свойств произведения числа на полуоктаву имеем:

$$\{c \cdot w_1, w_2, w_3\} = ((c \cdot w_1)w_2)w_3 - (c \cdot w_1)(w_2 w_3) = (c(w_1 w_2))w_3 - c(w_1(w_2 w_3)) = c((w_1 w_2)w_3) - c(w_1(w_2 w_3)) = c \cdot \{w_1, w_2, w_3\}$$

$$(1)$$

$$\{w_1, c \cdot w_2, w_3\} = (w_1(cw_2))w_3 - w_1((cw_2)w_3) = (c(w_1w_2))w_3 - w_1(c(w_2w_3)) = c((w_1w_2))w_3 - w_1(w_2w_3) = c((w_1w_2))w_3 - w_1(w_2w_3) = c(w_1w_2)w_3 - w_1(w_2w_3) + w_1(w_2w_$$

$$\{w_1, w_2, c \cdot w_3\} = (w_1 w_2)(c \cdot w_3) - w_1(w_2(c \cdot w_3)) = c ((w_1 w_2)w_3) - w_1(c(w_2 w_3)) = c ((w_1 w_2)w_3) - w_1(c(w_2 w_3)) = c \cdot \{w_1, w_2, w_3\}.$$

$$(3)$$

Из равенств (1) - (3) имеем требуемые соотношения

$$\{c \cdot w_1, w_2, w_3\} = \{w_1, c \cdot w_2, w_3\} = \{w_1, w_2, c \cdot w_3\} = c \cdot \{w_1, w_2, w_3\}$$

Теорема 9 доказана.

Теорема 10. Для любых полуоктав

$$w_1 = d_0 + d_1 i_1 + d_2 i_2 + d_3 i_3 + d_4 i_4 + d_5 i_5 + d_6 i_6 + d_7 i_7, \ w_2 = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7$$

$$w_3 = b_0 + b_1 i_1 + b_2 i_2 + b_3 i_3 + b_4 i_4 + b_5 i_5 + b_6 i_6 + b_7 i_7 \quad \mathbf{M} \quad w_4 = c_0 + c_1 i_1 + c_2 i_2 + c_3 i_3 + c_4 i_4 + c_5 i_5 + c_6 i_6 + c_7 i_7$$
 справедливо включение

$$\{w_1, \{w_2, w_3, w_2\}, w_4\} = 0.$$

Доказательство. Пусть даны полуоктавы

$$w_{1} = d_{0} + d_{1}i_{1} + d_{2}i_{2} + d_{3}i_{3} + d_{4}i_{4} + d_{5}i_{5} + d_{6}i_{6} + d_{7}i_{7},$$

$$w_{2} = a_{0} + a_{1}i_{1} + a_{2}i_{2} + a_{3}i_{3} + a_{4}i_{4} + a_{5}i_{5} + a_{6}i_{6} + a_{7}i_{7},$$

$$w_{3} = b_{0} + b_{1}i_{1} + b_{2}i_{2} + b_{3}i_{3} + b_{4}i_{4} + b_{5}i_{5} + b_{6}i_{6} + b_{7}i_{7},$$

$$w_{4} = c_{0} + c_{1}i_{1} + c_{2}i_{2} + c_{3}i_{3} + c_{4}i_{4} + c_{5}i_{5} + c_{6}i_{6} + c_{7}i_{7}.$$

где $a_k, b_k, c_k, d_k \in R$ $k = \overline{1,7}$. Ранее [5] было доказано, что $\{w_2, w_3, w_2\}$ удовлетворяет следующему соотношению

$$\{w_2,w_3,w_2\}=-2a_1a_3b_2+2a_2a_3b_1$$
, где $a_k,b_k\in R$ $k=\overline{1,3}$.

Обозначим

$$c = \{w_2, w_3, w_2\}.$$

В виду определения ассоциатора и выполнения свойства 6) теоремы 3, имеем следующие равенства

$$\{w_1, c, w_4\} = w_1(c \cdot w_4) - (w_1 \cdot c)w_4 = w_1(w_4 \cdot c) - (c \cdot w_1)w_4 =$$

$$= (w_1w_4)c - c(w_1w_4) = c(w_1w_4) - c(w_1w_4) = c(w_1w_4 - w_1w_4) = 0.$$

Теорема 10 доказана.

Пример 6. Пусть даны полуоктавы

$$\begin{split} w_1 &= 3 + 4i_1 + 5i_2 + 6i_3 + 7i_4 + 8i_5 + 9i_6 + i_7, \\ w_2 &= 1 + 2i_1 + 3i_2 + 4i_3 + 5i_4 + 6i_5 + 7i_6 + 8i_7, \\ w_3 &= 2 + i_1 - 3i_2 + 5i_3 + 6i_4 + 7i_5 + 8i_6 + 9i_7, \\ w_4 &= 4 + 5i_1 + 6i_2 + 7i_3 + 8i_4 + 9i_5 + 2i_6 + 3i_7. \end{split}$$

Тогда по теореме 10 их ассоциатор будет равен

$$\left\{w_{1},\left\{w_{2},w_{3},w_{2}\right\},w_{4}\right\}=w_{1}\left(\left\{w_{2},w_{3},w_{2}\right\}w_{4}\right)-\left(w_{1}\left\{w_{2},w_{3},w_{2}\right\}\right)w_{4}=0$$

Проверим этот результат напрямую, т.е. с помощью линейных и матричных вычислений произведения и разности полуоктав.

$$\{w_2, w_3, w_2\} = -2 \cdot 2 \cdot 4 \cdot (-3) + 2 \cdot 3 \cdot 4 \cdot 1 = 72.$$

Имеем следующие соотношения

$$\begin{split} w_1 \left\{ w_2, w_3, w_2 \right\} &= (72 \cdot 3) + (72 \cdot 4)i_1 + (72 \cdot 5)i_2 + (72 \cdot 6)i_3 + (72 \cdot 7)i_4 + (72 \cdot 7)i_5 + (72 \cdot 9)i_6 + (72 \cdot 1)i_7 = \\ &= 216 + 288i_1 + 360i_2 + 432i_3 + 504i_4 + 576i_5 + 648i_6 + 72i_7. \\ \left\{ w_2, w_3, w_2 \right\} w_4 &= (72 \cdot 4) + (72 \cdot 5)i_1 + (72 \cdot 6)i_2 + (72 \cdot 7)i_3 + (72 \cdot 8)i_4 + (72 \cdot 9)i_5 + (72 \cdot 2)i_6 + (72 \cdot 3)i_7 = \\ &= 288 + 360i_1 + 432i_2 + 504i_3 + 576i_4 + 648i_5 + 144i_6 + 216i_7. \end{split}$$

В силу определения матричного представления произведения полуоктав, имеем следующие равенства:

$$w_{1}(\{w_{2}, w_{3}, w_{2}\}) = \begin{bmatrix} 3 & -4 & -5 & -6 & 0 & 0 & 0 & 0 \\ 4 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 6 & -5 & 4 & 3 & 0 & 0 & 0 & 0 \\ 7 & -6 & 0 & 4 & 3 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\ 9 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 288 \\ 360 \\ 432 \\ 504 \\ 576 \\ 648 \\ 144 \\ 216 \end{bmatrix} = \begin{bmatrix} -5760 \\ 2232 \\ 2736 \\ 3168 \\ 3600 \\ 4248 \\ 3024 \\ 936 \end{bmatrix},$$

$$\left(w_1\{w_2,w_3,w_2\}\right)w_4 = \begin{bmatrix} 216 & -288 & -360 & -432 & 0 & 0 & 0 & 0 \\ 288 & 216 & 0 & 0 & 0 & 0 & 0 & 0 \\ 360 & 0 & 216 & 0 & 0 & 0 & 0 & 0 \\ 432 & -360 & 288 & 216 & 0 & 0 & 0 & 0 \\ 504 & -432 & 0 & 288 & 216 & 0 & 0 & 0 \\ 576 & 0 & 0 & 0 & 0 & 216 & 0 & 0 \\ 648 & 0 & 0 & 0 & 0 & 0 & 216 & 0 \\ 72 & 0 & 0 & 0 & 0 & 0 & 216 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -5760 \\ 2232 \\ 2736 \\ 3168 \\ 3600 \\ 4248 \\ 3024 \\ 936 \end{bmatrix}.$$

Таким образом,

$$\left\{w_{1},\left\{w_{2},w_{3},w_{2}\right\},w_{4}\right\}=w_{1}\left(\left\{w_{2},w_{3},w_{2}\right\}w_{4}\right)-\left(w_{1}\left\{w_{2},w_{3},w_{2}\right\}\right)w_{4}=\begin{bmatrix}-5760\\2232\\2736\\3168\\3600\\4248\\3024\\936\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0\\4248\\3024\\936\end{bmatrix}=0.$$

ГЛАВА 2. Последовательности полуоктав и их сходимость

Определение 8. Последовательностью полуоктав $\{w_n\} \in W$ называют последовательность вида:

$$\{w_n\}=\{a_0^{(n)}+a_1^{(n)}i_1+a_2^{(n)}i_2+a_3^{(n)}i_3+a_4^{(n)}i_4+a_5^{(n)}i_5+a_6^{(n)}i_6+a_7^{(n)}i_7\},\ a_i^{(n)}\in R,\ i=\overline{0,7},\ n\in N.$$
 Числа w_n (n = 1,2, ...) называются элементами или членами последовательности, w_n — общий или n-ый член последовательности.

Пример 7. Рассмотрим последовательность полуоктав

$$\{w_n\} = \left\{ \frac{1}{n^2} + \frac{n-1}{n^2 + 7} i_1 + \frac{4n}{n+8} i_2 - \frac{n^2}{n^2 + 1} i_3 - \frac{n^3}{3n^3 + 8} i_7 \right\}, \ n \in \mathbb{N}.$$

Тогда членами этой последовательности являются полуоктавы

$$\begin{split} w_1 &= \frac{1}{1^2} + \frac{1-1}{1^2+7} i_1 + \frac{4\cdot 1}{1+8} i_2 - \frac{1^2}{1^2+1} i_3 - \frac{1^3}{3\cdot 1^3+8} i_7 = 1 + \frac{4}{9} i_2 - \frac{1}{2} i_3 - \frac{1}{11} i_7, \\ w_2 &= \frac{1}{2^2} + \frac{2-1}{2^2+7} i_1 + \frac{4\cdot 2}{2+8} i_2 - \frac{2^2}{2^2+1} i_3 - \frac{2^3}{3\cdot 2^3+8} i_7 = \frac{1}{4} + \frac{1}{11} i_1 + \frac{8}{10} i_2 - \frac{4}{5} i_3 - \frac{8}{32} i_7, \\ w_3 &= \frac{1}{3^2} + \frac{3-1}{3^2+7} i_1 + \frac{4\cdot 3}{3+8} i_2 - \frac{3^2}{3^2+1} i_3 - \frac{3^3}{3\cdot 3^3+8} i_7 = \frac{1}{9} + \frac{2}{16} i_1 + \frac{12}{11} i_2 - \frac{9}{10} i_3 - \frac{27}{89} i_7, \end{split}$$

 $W_n = \frac{1}{n^2} + \frac{n-1}{n^2 + 7}i_1 + \frac{4n}{n+8}i_2 - \frac{n^2}{n^2 + 1}i_3 - \frac{n^3}{3n^3 + 8}i_7, \dots$

Определение 9. Последовательность полуоктав $\{w_n\}$ назовем вполне сходящейся во множестве полуоктав W, если для всех $i=\overline{0,7}$ сходятся последовательности действительных чисел $\{a_i^{(n)}\}$, т.е. при каждом $i=\overline{0,7}$ существуют и конечны пределы последовательностей действительных чисел $\lim_{i \to \infty} \left(a_i^{(n)}\right)$.

Замечание 4. Напомним, что

Определение 10. Действительное число $A \in R$ называется *пределом последовательности* действительных чисел $\{a_n\}$, если для любого $\varepsilon > 0$ существует такое натуральное число $N = N(\varepsilon)$ (зависящее от ε), что для всех $n \ge N(\varepsilon)$ выполняется неравенство $|a_n - a| < \varepsilon$, т. е.

$$\lim_{n\to\infty} (a_n) = a \Leftrightarrow (\forall \varepsilon > 0 \ \exists N(\varepsilon), \ \forall n \ge N(\varepsilon): \ |a_n - a| < \varepsilon)$$

Последовательность действительных чисел, имеющая предел, называется *сходящейся*, в противном случае – *расходящейся*.

Замечание 5. Из определения 9 следует, что полная сходимость последовательностей во множестве полуоктав есть сходимость, индуцированная сходимостью, во множестве действительных чисел. Поэтому

вместо термина «полная сходимость» можно также употреблять термин «сходимость полуоктав в смысле сходимости во множестве действительных чисел».

Исходя из определения 9,

Определение 11. Будем говорить, что последовательность полуоктав $\{w_n\} = \{a_0^{(n)} + a_1^{(n)}i_1 + a_2^{(n)}i_2 + a_3^{(n)}i_3 + a_4^{(n)}i_4 + a_5^{(n)}i_5 + a_6^{(n)}i_6 + a_7^{(n)}i_7\}, \ a_i^{(n)} \in R, \ i = \overline{0,7}, \ n \in \mathbb{N},$ полностью сходится к полуоктаве $w = a_0 + a_1i_1 + a_2i_2 + a_3i_3 + a_4i_4 + a_5i_5 + a_6i_6 + a_7i_7$, если при каждом $i = \overline{0,7}$ существуют и конечны пределы последовательностей $\{a_i^{(n)}\}$, причем для всякого $i = \overline{0,7}$ выполняются равенства

$$\lim_{n\to\infty} \left(a_i^{(n)}\right) = a_i.$$

Обозначать эту сходимость будем следующим образом:

$$\begin{split} \{w_n\} = & \{a_0^{(n)} + a_1^{(n)}i_1 + a_2^{(n)}i_2 + a_3^{(n)}i_3 + a_4^{(n)}i_4 + a_5^{(n)}i_5 + a_6^{(n)}i_6 + a_7^{(n)}i_7\} \xrightarrow[n \to \infty]{R} \\ \xrightarrow[n \to \infty]{R} w = a_0 + a_1i_1 + a_2i_2 + a_3i_3 + a_4i_4 + a_5i_5 + a_6i_6 + a_7i_7 \end{split}$$

и писать

$$\lim_{n\to\infty} \{w_n\} = w.$$

Замечание 6. Если же последовательность полуоктав не сходится полностью к некоторой полуоктаве (один из пределов не существует или равен бесконечности), то будем говорить, что данная последовательность полуоктав вполне расходится.

Пример 8. Исследуем на полную сходимость последовательность полуоктав из примера 7, т.е. последовательность

$$\{w_n\} = \left\{ \frac{1}{n^2} + \frac{n-1}{n^2 + 7} i_1 + \frac{4n}{n+8} i_2 - \frac{n^2}{n^2 + 1} i_3 - \frac{n^3}{3n^3 + 8} i_7 \right\}.$$

Поскольку выполняются очевидные равенства

$$\lim_{n \to \infty} \left(a_0^{(n)} \right) = \lim_{n \to \infty} \left(\frac{1}{n^2} \right) = 0, \quad \lim_{n \to \infty} \left(a_1^{(n)} \right) = \lim_{n \to \infty} \left(\frac{n-1}{n^2 + 7} \right) = 0, \quad \lim_{n \to \infty} \left(a_2^{(n)} \right) = \lim_{n \to \infty} \left(\frac{4n}{n+8} \right) = \frac{4}{1} = 4,$$

$$\lim_{n \to \infty} \left(a_3^{(n)} \right) = \lim_{n \to \infty} \left(-\frac{n^2}{n^2 + 1} \right) = -1, \quad \lim_{n \to \infty} \left(a_4^{(n)} \right) = \lim_{n \to \infty} \left(0 \right) = 0, \quad \lim_{n \to \infty} \left(a_5^{(n)} \right) = \lim_{n \to \infty} \left(0 \right) = 0,$$

$$\lim_{n \to \infty} a_6^{(n)} = \lim_{n \to \infty} \left(0 \right) = 0, \quad \lim_{n \to \infty} a_7^{(n)} = \lim_{n \to \infty} \left(-\frac{n^3}{3n^3 + 8} \right) = -\frac{1}{3},$$

то рассматриваемая последовательность $\{w_n\}$ полностью сходится к полуоктаве

$$w = 0 + 0i_1 + 4i_2 + (-1)i_3 + 0i_4 + 0i_5 + 0i_6 + \left(-\frac{1}{3}\right)i_7 = 4i_2 - i_3 - \frac{1}{3}i_7.$$

Пример 9. Исследуем на полную сходимость данную последовательность полуоктав

$$\left\{w_{n}\right\} = \left\{\frac{1}{n} + \frac{n-1}{n^{2}+7}i_{1} + \frac{4n^{2}}{n^{2}+1}i_{2} + \frac{n^{3}}{n^{2}+1}i_{5}\right\}.$$

Поскольку справедливо очевидное соотношение

$$\lim_{n\to\infty} \left(a_5^{(n)}\right) = \lim_{n\to\infty} \left(\frac{n^3}{n^2+1}\right) = \infty,$$

то рассматриваемая последовательность $\{w_n\}$ полностью расходится.

Определение 12. Последовательность полуоктав $\{w_n\} \in W$ называется ограниченной, если существует такое действительное число M>0, что для всех $i=\overline{0,7},\ n\in N$ выполняются неравенства $\left|a_i^{(n)}\right|\leq M$.

Пример 10. Последовательность полуоктав

$$\left\{w_{n}\right\} = \left\{\frac{1}{n^{2}+2} + \frac{n-3}{n^{2}+6}i_{1} + \frac{n}{n+8}i_{2} - \frac{n^{2}}{n^{2}+1}i_{3} - \frac{n^{2}}{5n^{2}+2}i_{4} - \frac{n^{2}}{7n^{2}+1}i_{5} + \frac{3n^{2}}{3n^{2}+5}i_{6} + \frac{n^{3}}{3n^{3}+1}i_{7}\right\}$$
 ограничена.

Действительно, при всех $i = \overline{0,7}$ и каждом $n \in N$ выполняются неравенства

$$\left| \frac{1}{n^2 + 2} \right| \le 1, \ \left| \frac{n - 3}{n^2 + 6} \right| \le 1, \ \left| \frac{n}{n + 8} \right| \le 1, \ \left| -\frac{n^2}{n^2 + 1} \right| \le 1, \ \left| -\frac{n^2}{5n^2 + 2} \right| \le 1,$$

$$\left| -\frac{n^2}{7n^2 + 1} \right| \le 1, \ \left| \frac{3n^2}{3n^2 + 5} \right| \le 1, \ \left| \frac{n^3}{3n^3 + 1} \right| \le 1.$$

Заметим, что не всякая последовательность ограничена.

Определение 13. Последовательность $\{w_n\}$ называется *неограниченной*, если для любого M>0 существует такое число $n:\left|a_i^{(n)}\right|>M$.

Поскольку множество действительных чисел является подмножеством полуоктав, то, очевидно, и для множества полуоктав существуют неограниченные последовательности.

Пример 11. Последовательность
$$\{w\} = \left\{\frac{1}{n} + \frac{n-1}{n^2+7}i_1 + \frac{4n^2}{n^2+1}i_2 + \frac{n^3}{n^2+1}i_5\right\}$$
 не ограничена.

Действительно, так как справедливо равенство

$$\lim_{n\to\infty} \left(a_5^{(n)}\right) = \lim_{n\to\infty} \left(\frac{n^3}{n^2+1}\right) = \infty,$$

то очевидно, что последовательность $\{a_5^{(n)}\}$, а с ней и последовательность полуоктав является неограниченной.

Теорема 11. Вполне сходящаяся последовательность ограничена.

Доказательство. Рассмотрим последовательность полуоктав $\{w_n\} = \{a_0^{(n)} + a_1^{(n)}i_1 + a_2^{(n)}i_2 + a_3^{(n)}i_3 + a_4^{(n)}i_4 + a_5^{(n)}i_5 + a_6^{(n)}i_6 + a_7^{(n)}i_7\}, \ a_i^{(n)} \in R, \ i = \overline{0,7}, \ n \in N$ и предположим что она сходится вполне к полуоктаве $w = a_0 + a_1i_1 + a_2i_2 + a_3i_3 + a_4i_4 + a_5i_5 + a_6i_6 + a_7i_7$. Последнее, ввиду определения 11, означает, что справедливы равенства $\lim_{n \to \infty} \left(a_i^{(n)}\right) = a_i$. Из этих равенств вытекает, что при каждом $i = \overline{0,7}$ для любого $\varepsilon > 0$ существует такой натуральный номер $N_i(\varepsilon)$, что для любого натурального $n \ge N_i(\varepsilon)$ выполняются равенства $\left|a_i^{(n)} - a\right| < \varepsilon$. Зафиксируем произвольное число $\varepsilon > 0$. По этому числу найдем номера $N_i(\varepsilon)$, $i = \overline{0,7}$. Возьмем $N = \max\{N_i(\varepsilon), \ i = \overline{0,7}\}$. Тогда справедливы неравенства

$$\left| \left(a_i^{(n)} - a \right) + a \right| \le \left| a_i^{(n)} - a \right| + \left| a \right| < \varepsilon + \left| a_i \right|$$
для всех $n \ge N$. (3)

Положим $M = max\{|a_i| + \varepsilon, |a_i^{\ 1}|, |a_i^{\ 2}|, \dots, |a_i^{\ (N_i-1)}|; i = \overline{0,7}\}$. Тогда отсюда и из формул (3) следуют неравенства $\left|a_i^{(n)}\right| \leq M$, очевидно выполняющиеся для всех натуральных номеров n, что и означает ограниченность последовательности $\{w_n\}$.

Теорема 11 доказана.

Определение 14. Если из некоторого бесконечного подмножества членов последовательности $\{w_n\}$ образована новая последовательность порядок следования членов в которой такой же, как и в $\{w_n\}$, то она называется подпоследовательностью последовательности $\{w_n\}$ и обозначается $\{w_{n_k}\}$.

Теорема 12. Всякая подпоследовательность вполне сходящейся последовательности сходится к тому же пределу.

Доказательство. Рассмотрим последовательность полуоктав $\{w_n\} = \{a_0^{(n)} + a_1^{(n)}i_1 + a_2^{(n)}i_2 + a_3^{(n)}i_3 + a_4^{(n)}i_4 + a_5^{(n)}i_5 + a_6^{(n)}i_6 + a_7^{(n)}i_7\}, \ a_i^{(n)} \in R, \ i = \overline{0,7}, \ n \in N$ и предположим что она сходится вполне к полуоктаве $w = a_0 + a_1i_1 + a_2i_2 + a_3i_3 + a_4i_4 + a_5i_5 + a_6i_6 + a_7i_7$. Последнее означает, что справедливы равенства $\lim_{n \to \infty} \left(a_i^{(n)}\right) = a_i$. Рассмотрим произвольную подпоследовательность последовательности

$$\{w_{n_k}\}=\{a_0^{(n_k)}+a_1^{(n_k)}i_1+a_2^{(n_k)}i_2+a_3^{(n_k)}i_3+a_4^{(n_k)}i_4+a_5^{(n_k)}i_5+a_6^{(n_k)}i_6+a_7^{(n_k)}i_7\},\ a_i^{(n_k)}\in R,\ i=\overline{0,7},\ k\in N.$$

Тогда при каждом $i = \overline{0,7}$ элементы $a_i^{(n_k)}$ являются элементами последовательности $a_i^{(n)}$, расположенными в том же порядке следования, что и элементы последовательности $a_i^{(n)}$, поэтому множество $a_i^{(n_k)}$ является

подпоследовательностью последовательности действительных чисел $a_i^{(n)}$, которая имеет предел a_i . Поскольку, если последовательность действительных чисел имеет предел, то любая ее подпоследовательность имеет своим пределом тоже число, то $\lim_{n\to\infty} \left(a_i^{(n_k)}\right) = a_i$ при всех $i=\overline{0,7}$. Тогда отсюда, ввиду определения полной сходимости последовательности полуоктав, имеют место равенства

$$\lim_{k\to\infty} (w_{n_k}) = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7 = w.$$

Теорема 12 доказана.

Пример 12. Пусть дана последовательность полуоктав

$$\left\{w_n\right\} = \left\{\frac{1}{n^2} + \frac{n-1}{n^2 + 7}i_1 + \frac{4n}{n+8}i_2 - \frac{n^2}{n^2 + 1}i_3 - \frac{n^3}{3n^3 + 8}i_7\right\},\,$$

тогда подпоследовательностью данной последовательности является, например, последовательность

$$\left\{w_{n_k}\right\} = \left\{\frac{1}{4n^2} + \frac{2n-1}{4n^2+7}i_1 + \frac{4n}{n+4}i_2 - \frac{4n^2}{4n^2+1}i_3 - \frac{n^3}{3n^3+1}i_7\right\}.$$

Последовательность полуоктав $\{w_n\}$ сходится к полуоктаве $4i_2 - i_3 - \frac{1}{3}i_7$.

Последовательность полуоктав $\{w_{n_k}\}$ сходится к полуоктаве $4i_2 - i_3 - \frac{1}{3}i_7$.

Определение 15. Суммой, разностью, произведением последовательностей полуоктав $\{w_n\}$ и $\{u_n\}$, называют последовательности полуоктав, удовлетворяющие соответственно равенствам

1)
$$\{w_n\} + \{u_n\} = \{w_n + u_n\}, n \in N;$$

2)
$$\{w_n\} - \{u_n\} = \{w_n - u_n\}, n \in \mathbb{N};$$

3)
$$\{w_n\} \cdot \{u_n\} = \{w_n \cdot u_n\}, n \in \mathbb{N}.$$

Определение 16. Произведением полуоктавы $v \in W$ на последовательность полуоктав, для которой верно соотношение

$$v \cdot \{w_n\} = \{v \cdot w_n\}, \ n \in \mathbb{N}.$$

Определение 17. Коммутатор последовательностей полуоктав $\{w_n\}$ и $\{u_n\}$ определим как последовательность полуоктав, удовлетворяющую тождеству

$$[\{w_n\}, \{u_n\}] = \{[w_n, u_n]\}, n \in N.$$

Определение 18. Ассоциатором последовательностей полуоктав $\{w_n\}$, $\{u_n\}$ и $\{t_n\}$ будем называть последовательность полуоктав, для которой выполняется равенство

$$\{\{w_n\},\{u_n\},\{t_n\}\}=\{\{w_n,u_n,t_n\}\}, n\in\mathbb{N}.$$

Пусть существуют и конечны следующие пределы последовательностей полуоктав $\lim_{n\to\infty} \{w_n\}$, $\lim_{n\to\infty} \{u_n\}$ и $\lim_{n\to\infty} \{t_n\}$. Тогда выполняются следующие равенства:

1)
$$\lim_{n \to \infty} \{w_n + u_n\} = \lim_{n \to \infty} \{w_n\} + \lim_{n \to \infty} \{u_n\};,$$
2)
$$\lim_{n \to \infty} \{w_n \cdot u_n\} = \lim_{n \to \infty} \{w_n\} \cdot \lim_{n \to \infty} \{u_n\};,$$
3)
$$\lim_{n \to \infty} \{c \cdot w_n\} = c \cdot \lim_{n \to \infty} \{w_n\};,$$
4)
$$\lim_{n \to \infty} \left[\{w_n\}, \{u_n\}\right] = \left[\lim_{n \to \infty} \{w_n\}, \lim_{n \to \infty} \{u_n\}\right];,$$
5)
$$\lim_{n \to \infty} \{\{w_n\}, \{u_n\}\} = \{\lim_{n \to \infty} \{w_n\}, \lim_{n \to \infty} \{u_n\}, \lim_{n \to \infty} \{t_n\}\}.$$

Доказательство свойств (1) — (3). На основании определений 15 и 16 имеем равенства

$$1) \lim_{n \to \infty} \left\{ w_n + u_n \right\} =$$

$$= \lim_{n \to \infty} \left((a_0 + b_0)^{(n)} + (a_1 + b_1)^{(n)} i_1 + (a_2 + b_2)^{(n)} i_2 + (a_3 + b_3)^{(n)} i_3 + (a_4 + b_4)^{(n)} i_4 + (a_5 + b_5)^{(n)} i_5 + (a_6 + b_6)^{(n)} i_6 + (a_7 + b_7)^{(n)} i_7 \right) =$$

$$= (a_0 + b_0) + (a_1 + b_1) i_1 + (a_2 + b_2) i_2 + (a_3 + b_3) i_3 + (a_4 + b_4) i_4 + (a_5 + b_5) i_5 + (a_6 + b_6) i_6 + (a_7 + b_7) i_7 =$$

$$= w + u = \lim_{n \to \infty} \left\{ w_n \right\} + \lim_{n \to \infty} \left\{ u_n \right\};$$

$$2) \lim_{n \to \infty} \left\{ w_n \cdot u_n \right\} =$$

$$\lim_{n \to \infty} ((a_0^{(n)} b_0^{(n)} - a_1^{(n)} b_1^{(n)} - a_2^{(n)} b_2^{(n)} - a_3^{(n)} b_3^{(n)}) + (a_1^{(n)} b_0^{(n)} + a_0^{(n)} b_1^{(n)}) i_1 + ((a_2 b_0)^n + (a_0 b_2)^n) i_2 + (a_0^{(n)} b_3^{(n)} + a_3^{(n)} b_0^{(n)} +$$

$$+ a_1^{(n)} b_2^{(n)} - a_2^{(n)} b_1^{(n)} i_3 + (a_0^{(n)} b_4^{(n)} + a_4^{(n)} b_3^{(n)} + a_3^{(n)} b_1^{(n)} i_4 + (a_5^{(n)} b_0^{(n)} + a_0^{(n)} b_5^{(n)} i_5 + (a_6^{(n)} b_0^{(n)} + a_0^{(n)} b_0^{(n)} + a_0^{(n)} b_7^{(n)} i_7) =$$

$$= (a_0 b_0 - a_1 b_1 - a_2 b_2 - a_3 b_3) + (a_1 b_0 + a_0 b_1) i_1 + (a_2 b_0 + a_0 b_2) i_2 + (a_0 b_3 + a_3 b_0 + a_1 b_2 - a_2 b_1) i_3 + (a_0 b_4 + a_4 b_0 + a_1 b_3 - a_3 b_1) i_4 +$$

$$+ (a_5 b_0 + a_0 b_5) i_5 + (a_6 b_0 + a_0 b_6) i_6 + (a_7 b_0 + a_0 b_7) i_7 = w \cdot u = \lim_{n \to \infty} \left\{ w_n \right\} \cdot \lim_{n \to \infty} \left\{ u_n \right\};$$

$$3) \lim_{n \to \infty} \left\{ c \cdot w_n \right\} = \lim_{n \to \infty} \left(a_0^{(n)} c + \left(a_1^{(n)} i_1 \right) c + \left(a_2^{(n)} i_2 \right) c + \left(a_3^{(n)} i_3 \right) c + \left(a_4^{(n)} i_4 \right) c + \left(a_5^{(n)} i_5 \right) c + \left(a_6^{(n)} i_6 \right) c + \left(a_7^{(n)} i_7 \right) c \right) =$$

$$= \lim_{n \to \infty} \left(c \left(a_0^{(n)} + a_1^{(n)} i_1 + a_2^{(n)} i_2 + a_3^{(n)} i_3 + a_4^{(n)} i_4 + a_5^{(n)} i_5 + a_6^{(n)} i_6 + a_7^{(n)} i_7 \right) - w \cdot u = \lim_{n \to \infty} \left\{ u_n \right\};$$

Доказательство свойств (4) и (5). На основании свойств (1) - (2) имеем следующие равенства

$$4)\lim_{n\to\infty}\bigl\{[w_n,u_n]\bigr\} == \lim_{n\to\infty}\bigl(w_nu_n-u_nw_n\bigr) = \lim_{n\to\infty}\bigl(w_nu_n\bigr) - \lim_{n\to\infty}\bigl(u_nw_n\bigr) = [\lim_{n\to\infty}\bigl\{w_n\bigr\}, \lim_{n\to\infty}\bigl\{u_n\bigr\}];$$

$$5) \lim_{n \to \infty} \{\{w_n\}, \{u_n\}, \{t_n\}\} = \lim_{n \to \infty} (w_n(u_n t_n) - (w_n u_n)t_n) = \{\lim_{n \to \infty} \{w_n\}, \lim_{n \to \infty} \{u_n\}, \lim_{n \to \infty} \{t_n\}\}.$$

Во множестве полуоктав в работе [5] было введено понятие нормы полуоктавы.

Определение 19 [5]. Нормой полуоктавы

$$w = a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 + a_4 i_4 + a_5 i_5 + a_6 i_6 + a_7 i_7 \in W$$

называется действительное число, равное

$$N_w = \|w\| = w \cdot \overline{w} = \overline{w} \cdot w = a_0^2 + a_1^2 + a_2^2 + a_3^2$$

Пример 13. Пусть дана полуоктава $w = -1 + 2i_1 + 3i_2 - 7i_3 + i_4 - 4i_6 + 8i_7$. Тогда нормой этой полуоктавы является число $N_w = (-1)^2 + 2^2 + 3^2 + (-7)^2 = 63$.

Имеют место следующие свойства нормы полуоктав

Теорема 13 [5]. При всяких $w, w_1, w_2 \in W$ и $c, c_1, c_2 \in R$ для операции сопряжения полуоктав имеют место следующие свойства:

1)
$$\overline{w} = w$$
; 2) $\overline{c_1 w_1 + c_2 w_2} = c_1 \overline{w_1} + c_2 \overline{w_2}$;
3) $N_{cw} = c^2 N_w$; 4) $N_{w_1 \cdot w_2} \neq N_{w_1} \cdot N_{w_2}$;
5) $N_{\overline{w}} = N_w$.

Используя понятие нормы полуоктавы, резонно ввести сходимость последовательности полуоктав на основе этого понятия.

Определение 20. Будем говорить, что последовательность полуоктав $\{w_n\} = \{a_0^{(n)} + a_1^{(n)}i_1 + a_2^{(n)}i_2 + a_3^{(n)}i_3 + a_4^{(n)}i_4 + a_5^{(n)}i_5 + a_6^{(n)}i_6 + a_7^{(n)}i_7\}, \ a_i^{(n)} \in R, \ i = \overline{0,7}, \ n \in \mathbb{N}$ сходиться по норме к полуоктаве $w = a_0 + a_1i_1 + a_2i_2 + a_3i_3 + a_4i_4 + a_5i_5 + a_6i_6 + a_7i_7$, если выполняется равенство

$$\lim_{n\to\infty} ||w_n - w|| = 0.$$

Сходимость по норме последовательности $\{w_n\}$ к полуоктаве w будем обозначать

$$\{w_n\} \xrightarrow[n \to \infty]{\parallel \parallel} w.$$

Теорема 14. Из полной сходимости полуоктав следует их сходимость по норме.

Доказательство. Рассмотрим последовательность полуоктав $\{w_n\} = \{a_0^{(n)} + a_1^{(n)}i_1 + a_2^{(n)}i_2 + a_3^{(n)}i_3 + a_4^{(n)}i_4 + a_5^{(n)}i_5 + a_6^{(n)}i_6 + a_7^{(n)}i_7\}, \ a_i^{(n)} \in R, \ i = \overline{0,7}, \ n \in N$ и предположим, что она сходится вполне к полуоктаве $w = a_0 + a_1i_1 + a_2i_2 + a_3i_3 + a_4i_4 + a_5i_5 + a_6i_6 + a_7i_7$. Последнее означает, что справедливы равенства $\lim_{n \to \infty} \left(a_i^{(n)}\right) = a_i$.

Тогда из определения сходимости по норме и нормы полуоктавы

$$\lim_{n \to \infty} \|w_n - w\| = \lim_{n \to \infty} ((a_0^n - a_0)^2 + (a_1^n - a_1)^2 + (a_2^n - a_2)^2 + (a_3^n - a_3)^2)$$

Поскольку $\lim_{n\to\infty} \left(a_i^{(n)}\right) = a_i$, то выполняются очевидные равенства

$$\lim_{n\to\infty} \left(a_0^{(n)} - a_0\right)^2 = 0, \lim_{n\to\infty} \left(a_1^{(n)} - a_1\right)^2 = 0, \lim_{n\to\infty} \left(a_2^{(n)} - a_2\right)^2 = 0, \lim_{n\to\infty} \left(a_3^{(n)} - a_3\right)^2 = 0,$$

значит рассматриваемая последовательность полностью сходится по норме

$$\lim_{n\to\infty} ||w_n - w|| = 0.$$

Теорема 14 доказана.

Пример 14. Рассмотрим последовательность полуоктав из примера 7, т.е. последовательность

$$\{w_n\} = \left\{ \frac{1}{n^2} + \frac{n-1}{n^2 + 7} i_1 + \frac{4n}{n+8} i_2 - \frac{n^2}{n^2 + 1} i_3 - \frac{n^3}{3n^3 + 8} i_7 \right\}, \ n \in \mathbb{N}.$$

При всех $i = \overline{0,7}$, $n \in N$ справедливы неравенства

Поскольку выполняются очевидные равенства

$$\lim_{n\to\infty} \left(a_0^{(n)}\right) = \lim_{n\to\infty} \left(\frac{1}{n^2}\right) = 0, \quad \lim_{n\to\infty} \left(a_1^{(n)}\right) = \lim_{n\to\infty} \left(\frac{n-1}{n^2+7}\right) = 0, \quad \lim_{n\to\infty} \left(a_2^{(n)}\right) = \lim_{n\to\infty} \left(\frac{4n}{n+8}\right) = \frac{4}{1} = 4,$$

$$\lim_{n\to\infty} \left(a_3^{(n)}\right) = \lim_{n\to\infty} \left(-\frac{n^2}{n^2+1}\right) = -1, \quad \lim_{n\to\infty} \left(a_4^{(n)}\right) = \lim_{n\to\infty} \left(0\right) = 0, \quad \lim_{n\to\infty} \left(a_5^{(n)}\right) = \lim_{n\to\infty} \left(0\right) = 0,$$

$$\lim_{n\to\infty} a_6^{(n)} = \lim_{n\to\infty} \left(0\right) = 0, \quad \lim_{n\to\infty} a_7^{(n)} = \lim_{n\to\infty} \left(-\frac{n^3}{3n^3+8}\right) = -\frac{1}{3},$$

то рассматриваемая последовательность $\{w_n\}$ полностью сходится к полуоктаве

$$w = 0 + 0i_1 + 4i_2 + (-1)i_3 + 0i_4 + 0i_5 + 0i_6 + \left(-\frac{1}{3}\right)i_7 = 4i_2 - i_3 - \frac{1}{3}i_7.$$

В силу определения 17 рассматриваемая последовательность полуоктав сходится по норме. Действительно, справедливы равенства

$$\lim_{n \to \infty} \|w_n - w\| = \lim_{n \to \infty} \left(\left(\frac{1}{n^2} - 0 \right)^2 + \left(\frac{n - 1}{n^2 + 7} - 0 \right)^2 + \left(\frac{4n}{n + 8} - 4 \right)^2 + \left(-\frac{n^2}{n^2 + 1} - (-1) \right)^2 \right) =$$

$$= \lim_{n \to \infty} \left(\frac{1}{n^4} + \left(\frac{n - 1}{n^2 + 7} \right)^2 + \left(-\frac{32}{n + 8} \right)^2 + \left(\frac{1}{n^2 + 1} \right)^2 \right) = 0.$$

Замечание 7. Из сходимости по норме последовательности полуоктав в общем случае не следует её полная сходимость.

Пример 15. Рассмотрим последовательность полуоктав

$$\left\{w_{n}\right\} = \left\{\frac{1}{n} + \frac{n-1}{n^{2}+7}i_{1} + \frac{4n^{2}}{n^{2}+1}i_{2} + \frac{n^{3}}{n^{2}+1}i_{5}\right\}.$$

При всех $i = \overline{0,7}$, $n \in N$ справедливы неравенства

$$\lim_{n \to \infty} \left(a_0^{(n)} \right) = \lim_{n \to \infty} \left(\frac{1}{n} \right) = 0, \quad \lim_{n \to \infty} \left(a_1^{(n)} \right) = \lim_{n \to \infty} \left(\frac{n-1}{n^2 + 7} \right) = 0, \quad \lim_{n \to \infty} \left(a_2^{(n)} \right) = \lim_{n \to \infty} \left(\frac{4n^2}{n^2 + 1} \right) = \frac{4}{1} = 4,$$

$$\lim_{n \to \infty} \left(a_3^{(n)} \right) = \lim_{n \to \infty} \left(0 \right) = 0, \quad \lim_{n \to \infty} \left(a_4^{(n)} \right) = \lim_{n \to \infty} \left(0 \right) = 0, \quad \lim_{n \to \infty} \left(a_5^{(n)} \right) = \lim_{n \to \infty} \left(\frac{n^3}{n^2 + 1} \right) = \infty,$$

$$\lim_{n \to \infty} a_6^{(n)} = \lim_{n \to \infty} \left(0 \right) = 0, \quad \lim_{n \to \infty} a_7^{(n)} = \lim_{n \to \infty} \left(0 \right) = 0,$$

$$\lim_{n \to \infty} a_6^{(n)} = \lim_{n \to \infty} \left(0 \right) = 0, \quad \lim_{n \to \infty} a_7^{(n)} = \lim_{n \to \infty} \left(0 \right) = 0,$$

Поэтому в силу определения 17 рассматриваемая последовательность полуоктав сходится по норме. Действительно, справедливы равенства

$$\lim_{n\to\infty} ||w_n - w|| = \lim_{n\to\infty} \left(\left(\frac{1}{n} - 0 \right)^2 + \left(\frac{n-1}{n^2 + 7} i_1 - 0 \right)^2 + \left(\frac{4n^2}{n^2 + 1} i_2 - 4 \right)^2 + \left(0 - 0 \right)^2 \right) = 0.$$

Исследуем теперь эту последовательность на полную сходимость. Поскольку выполняется очевидное равенство

$$\lim_{n\to\infty} a_5^{(n)} = \lim_{n\to\infty} \left(\frac{n^3}{n^2 + 1} \right) = \infty,$$

то рассматриваемая последовательность расходится в смысле полной сходимости полуоктав.

ЗАКЛЮЧЕНИЕ

Таким образом, в настоящей работе для множества полуоктав введено понятие коммутатора как меры отклонения операции умножения полуоктав от коммутативности. Изучены отдельные свойства ассоциатора и коммутатора, а также взаимосвязь этих операций.

В работе также введено понятие последовательности полуоктав, арифметических операций над такими последовательностями. Даны и изучены свойства сходимости (полной и по норме) полуоктав, установлены некоторые свойства сходящихся последовательностей полуоктав (напр., ограниченность последовательности полуоктав).

В дальнейшем планируется ввести понятие полуоктавной функции, определенной на множестве полуоктав, и, на основании введенных в данной работе понятий предела во множестве полуоктав, рассмотреть свойство непрерывности таких функций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) *Тихомиров*, *В. М.* Десять доказательств основной теоремы алгебры / В. М. Тихомиров, В. В. Успенский // Математическое просвещение. МЦНМО, 1997. № 1. С. 50—70.
- 2) *Яглом, И. М.* Комплексные числа и их применение в геометрии / И. М. Яглом. М.: Физматлит, 1963. 192 с.
- 3) *Rosenfeld, B.* Geometry of Lie groups / B. Rosenfeld. Kluwer Academic Publishers, Netherlands, 1997. 336 p.
- 4) *Mortazaasl*, *H*. A study on semi-quaternions algebra in semi-Euclidean 4-space/H.Mortazaasl, M. Jafari // Mathematical Sciences And Applications E-Notes. 2013. Vol. 1. № 2. PP. 20–27.
- 5) *Козлов, А.А.* Множество полуоктав. I / А.А. Козлов // Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки. 2016. Noll 12. С. 75-85
- 6) *Скорняков*, *Л.А.* Общая алгебра / под общей редакцией Скорнякова Л.А.. М.: Наука, 1990. Т. 1. 592 с.